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Abstract 

This paper uses a neoclassical investment model extended with installation costs for capital, 

agency costs for investment financing, and the possibility of the firm being output constrained 

as a framework for an empirical analysis of investment behaviour in the Swedish 

manufacturing industry. The theory is implemented within a multivariate error-correction 

approach on data covering the time period 1951 to 1995, and we gain the following main 

results: (1) Tobin’s average Q is not the sole determinant of investment, neither in the short 

nor in the long run, and other variables like real output and capital gearing also affect 

investment activity; (2) the out-of-sample forecasts of the model track the evolution of actual 

investment growth quite impressively, especially at short- and medium-term horizons (1-2 

years); (3) a relative equity-price variable is shown to constitute a good approximation of 

average Q, both for empirical modelling in general and forecasting in particular. 
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1. Introduction 

 

Empirical investment models have a mixed history. Often, these models perform poorly when 

evaluated econometrically and their forecasting properties are often disappointing. Partly, this 

may be due to the fact that investment activity is relatively volatile and therefore difficult to 

model empirically, but unsatisfying theoretical assumptions and inappropriate econometric 

methods may also be part of the answer. 

In a neoclassical investment model real investment is determined solely by Tobin’s 

Q. Other variables, like real output and interest rates, affect investment as well, but indirectly 

through their effects on marginal Q. Under linear homogeneity of the production and 

adjustment-cost functions, the standard price-taking model implies that Tobin’s marginal Q 

equals average Q (or the valuation ratio of the firm). However, empirically, average Q does 

not appear to provide a satisfactory explanation of investment, and other variables like real 

output and different financial aggregates are often found to be important as well.1 

Unfortunately, the possibility to consider less restricted versions of the model is limited by the 

fact that marginal Q, in contrast to average Q, is unobservable. 

In this paper we follow Cuthbertson and Gasparro (1995) and use a version of a 

neoclassical investment model extended with installation costs for capital, agency costs for 

investment financing, and the possibility of the firm being output constrained as a framework 

for an empirical analysis of investment behaviour in the Swedish manufacturing industry. 

Consistent with the above-discussed established “stylised facts”, the model does not restrict 

investment to be solely determined by average Q, and allows for influences from both output 

and financial mechanisms (through a term that captures agency and transaction costs for 

financing investment). The empirical results are derived using a multivariate error-correction 

approach, which among other things permits us to impose long-run restrictions rooted in 

economic theory. The results suggest that both average Q and output are significant 

explanatory variables for investment in the long run. As concerns the short-run dynamics of 

investment, all variables of the system are found to be statistically important, either directly or 

indirectly. 

Our empirical analysis extends that of Cuthbertson and Gasparro (1995) in that we 

consider an econometric system in which all the included macro variables are modelled 

                                                           
1 See for example Anderson (1981), Bean (1981), Jenkinson (1981), Hayashi (1982), Poterba and Summers 
(1983), Bond and Devereux (1988), Henley and Carruth (1989), Sumner (1989), Lomax (1990), Schaller (1990), 
Bond and Meghir (1990), Cuthbertson and Gasparro (1995). 



 3 

endogenously. Apart from eschewing the problem of having to rely on results that are 

conditioned on strong and untested exogeneity restrictions, such a system approach has the 

distinct advantage of offering the possibility to undertake dynamic (multi-step) forecasting of 

investment. A rather promising feature of our empirical results is that the out-of-sample 

forecasting performance of the model turns out to be quite impressive, especially at short- and 

medium-term horizons (1-2 years). In addition, this performance can be maintained for a 

simplified, less data-demanding, version of the model in which average Q is approximated by 

a relative equity-price variable. 

The paper is organised as follows. The next section gives a brief review of the 

theoretical neoclassical investment model of Cuthbertson and Gasparro (1995). In Section 3 

we specify our econometric system and present the empirical results. These are obtained using 

annual data for the Swedish manufacturing industry covering the time period 1951 to 1995. In 

Section 4 we study forecasting properties and suggest an approximation based on a relative 

equity-price variable. Section 5 provides concluding remarks. 

 

2. A brief review of the model 

 

In the standard neoclassical intertemporal model of investment with adjustment costs, the 

representative firm maximises the discounted present value of future profits subject to linearly 

homogeneous production and cost functions. The Cuthbertson-Gasparro model adds two (as 

we believe not unrealistic) assumptions to this standard framework. Firstly, following 

Chirinko (1987), it is assumed that the (representative) firm faces agency and transaction 

costs when issuing new debt and when managing the stock of outstanding debt. Secondly, 

following Precious (1987), the firm may move between states such that it sometimes is 

demand constrained. With these modifications, marginal Q is not equal to average Q but 

determined by average Q and components that depend on output and financial mechanisms. 

More specifically, under certain additional conditions:2 

 

),,( YGQII = ,     (1) 

                                                           
2 See Cuthbertson and Gasparro (1995) for details. In a more general version of the model there may also be 
room for a real-wage effect in the solution for investment. However, empirically, when experimenting with a 
larger system that also allows for influences from the real (product) wage, the statistical behaviour of the model 
turns out to deteriorate markedly. Furthermore, apart from the autoregressive lags in the wage equation, the wage 
variable does not appear to have any further significant effects. Also, the forecasting performance of the model 
does not appear to improve. On these grounds we decided not to include data on real wages in our preferred final 
analysis (see Sections 3 and 4). 
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where I is investment, Q Tobin’s average Q, G capital gearing (the stock of debt in relation to 

the value of the capital stock), and Y output. 

 In this paper we follow Cuthbertson and Gasparro (1995) and use the above-

described theoretical framework mainly as a basis for analysing investment behaviour in the 

long run. Emanating from (1) we will thus test for the existence of a possible long-run 

equilibrium relationship (a so-called cointegrating relationship) which involves real 

investment being linearly related to output, capital gearing, and the valuation ratio. Our 

modelling strategy then entails conditioning a dynamic system analysis on the extracted long-

run properties of the data (provided, of course, that the data are cointegrated). This modelling 

strategy allows us to acknowledge the complicated dynamic interactions present in the short-

run information of the data, while at the same time gaining interpretability and efficiency by 

imposing long-run restrictions suggested by theory. 

 

3. Empirical results3 

 

The data is annual and run from 1951 to 1995. The (log levels of the) four time series (i.e., 

capital gearing G, the valuation ratio Q, output Y, and investment I) are graphed in Figure 1.4 

As can be seen, the series display the non-stationary behaviour that is typical for most macro 

aggregates: they are trending and deviations from trend are characterised by persistence. 

These properties imply that the series probably are integrated of order one (i.e., I(1)), a 

conclusion which is also supported by formal univariate unit-root tests (not shown).5 

 

[Figure 1. about here] 

 

If there among non-stationary I(1) variables exist linear combinations that cancel the 

stochastic trends and are stochastically stationary (i.e., I(0)), then the variables are said to be 

cointegrated and there exists an error-correction representation of the data. While Cuthbertson 

and Gasparro (1995) based their cointegration analysis on the Engle-Granger approach, this 

                                                           
3 The empirical analysis has been undertaken using PcFIML version 9.0. 
4 Figure 1 also provides the graph of the relative equity-price variable used in Section 4.2. This variable is 
denoted by S. Details of definitions and sources of the data are given in an appendix. 
5 At this point, we emphasise that our empirical analysis does not require all the series to be individually I(1) (for 
more details on this, see section 3.2). The only property that has to be ruled out from the outset is that of I(2)-
ness. Given the evidence presented above, this does not appear to be an overly restrictive pre-requisite in the 
present application. 
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paper applies the multivariate Johansen methodology, which in many simulation experiments 

has been found to outperform other methods for testing for cointegration.6 

 Our empirical analysis may be divided into the following basic steps: (1) lag-order 

determination within the unrestricted vector-autoregressive (VAR) representation; (2) 

cointegration analysis; (3) system reduction using the general-to-specific approach; and (4) 

evaluation of forecasting properties. 

 

3.1 Lag-order determination 

 

Table 1 displays results of applying information criteria and lag-reduction F tests to 

unrestricted VAR systems using a maximum lag length of four years. The information-criteria 

results are shown in Panel 1.1 while the outcomes for the F tests are shown in Panel 1.2. The 

information criteria suggest that one lag (SC) or two lags (HQ and AIC) may be appropriate. 

The significance tests strongly favour two lags. From this evidence it seems reasonable to 

conclude that a two-year lag is an appropriate choice for obtaining a statistically well-behaved 

model. This conclusion is given further support by the diagnostic-test results compiled in 

Table 2. In this table, both multivariate (Panel 2.1) and univariate (Panel 2.2) diagnostic tests 

are displayed. As can be seen, there is no evidence of mis-specification problems: the 

residuals of all equations easily pass the tests at the conventional significance levels. 

 

[Table 1. about here] 

 

[Table 2. about here] 

 

3.2 Integration and cointegration analysis 

 

Techniques for testing for integration and cointegration within an unrestricted VAR model 

have been developed by Johansen (1988, 1991). Johansen’s so-called ML procedure starts 

from the following re-parameterisation of the unrestricted VAR: 

 

∆ Π Γ ∆X X Xt t t t= + +− −1 1 1 ε ,     (2) 

                                                           
6 See for example Hargreaves (1994) and Gonzalo (1994). As an alternative we have also used the univariate 
technique suggested by Pesaran and Shin (1997) and Pesaran and Pesaran (1997). The results using this 
technique are very similar. 
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where deterministic variables have been omitted for expository convenience. In our case, the 

underlying VAR model has two level lags, and so the re-parameterised model (2) only has 

one lag of ∆Xt . Of course, X G Q Y It t t t t= ′ . 

 The key to the analysis is the rank of the matrix Π . If this matrix has reduced rank, 

then Π = ′αβ  where α  and β  both are 4 × r  matrices. The stochastic parameter r gives the 

number of cointegrating vectors that characterise the system. The cointegrating vectors, which 

are contained in the columns of β , are such that ′β Xt  is I(0), although Xt  is I(1).7 

 The results of Johansen’s so-called trace tests are shown in Panel 3.1 of Table 3. 

Because Xt  appears to be linearly trending (see Figure 1), an unrestricted vector of constants 

is added to the right-hand side of the system (2).8 According to the results, the hypothesis of 

0=r  cannot be rejected at the 5 percent test level. However, as shown in Jacobson and 

Nessén (1998) and Jacobson et al. (2000) these asymptotic tests do not always work very well 

in applications with small samples. Panel 3.2 of Table 3 therefore investigates the effects of 

determining r using information criteria rather than asymptotic inference. As can be seen, 

both the SC and HQ criteria favour 1=r  while the AIC favours a VAR in first differences 

( 0=r ). Synthesising this evidence, we conclude that our system is characterised by at most 

one cointegrating vector (i.e., 0=r  or 1=r ). With 0=r , however, the residuals of the 

investment equation show signs of being serially correlated: the F test for second-order serial 

correlation rejects with a p value of approximately three percent. Once we impose the 

restriction 1=r , there are no signs of serial correlation and the residuals of all equations 

appear approximately to be white noise. 

 

[Table 3. about here] 

 

 In its unrestricted version, the unique (normalised) cointegrating vector has the 

following appearance: 

 

I G Q Yt t t t= + +0 71 0 37 0 62
0 54 0 15 0 13

. . .
( . ) ( . ) ( . )

,     (3) 

                                                           
7 Note that the statement that a vector of time-series variables is I(1) does not imply that all variables in that 
vector are I(1). For a vector of time-series variables to be called I(1) it is sufficient that one variable in the vector 
is I(1). Hence, some cointegrating vectors may be trivial in the sense that the variables themselves are the 
cointegrating vectors. 
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where the numbers within parentheses are standard errors. Somewhat surprisingly, the 

parameter estimate on the capital-gearing variable is positive. Its standard error, however, 

suggests that Gt  may not be a significant determining factor of long-run investment. Indeed, 

using an LR test we can reject the hypothesis that Gt  enters the long-run equilibrium 

relationship significantly: the p value of the test is slightly above 30 percent. As concerns Qt  

and Yt , the LR tests have p values well below the 10 percent level: slightly below five percent 

in the case of Qt  and slightly above two percent in the case of Yt . Finally, for It  the p value is 

0.00, strengthening our view that the identified relationship determines long-run investment.

 Imposing the data-acceptable exclusion restriction on Gt , we obtain the following 

long-run investment relationship:9 

 

I Q Yt t t= +0 29 0 78. . .10      (4) 

 

Before further simplifying our model, we check that the residuals of the restricted VAR (i.e., 

the VAR subject to 1=r  and ( )178.029.00' −−=β ) fulfil the requirement of being 

approximately Gaussian white noise. The details of the diagnostic tests (not shown) suggest 

that the model is free of serial correlation, has homoscedastic and normally distributed error 

terms, is approximately constant, and does not exhibit any ARCH effects. 

 

3.3 The parsimonious vector error-correction model 

 

Having established that a VAR with a single restricted cointegrating vector may be used as a 

reasonable representation of the data, we now turn to the exercise of simplifying the dynamics 

of that model. Here, we employ the well-known general-to-specific approach popularised by, 

amongst others, David Hendry (see, for example, Hendry, 1995). The methodology starts 

from a general (possibly) over-parameterised but statistically well-behaved representation of 

                                                                                                                                                                                     
8 This also means that the cointegrating relationships are allowed to have non-zero means. 
9 We have also tested a version of the model in which r = 3  and Qt , Gt , and I Yt t−  are I(0) (these hypotheses 
are all rejected given that r = 1). The results show that the imposition of these restrictions implies a significant 
deterioration in forecasting performance (cf. Section 4). 
10 It is interesting to compare (4) with a simple OLS regression of investment on the valuation ratio and output 
(and a constant). The OLS parameter estimates are 0.26 and 0.78 for the valuation ratio and output respectively. 
Using a critical value calculated via MacKinnon’s (1991) response-surface results we can reject the null of no 
cointegration at the 5 percent test level (ADF(1) = -4.37 < -3.94 = critical value at the 5 percent test level). 
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the data; in our case a VAR with two lags and a cointegration restriction (i.e., an unrestricted 

(vector) error-correction model). It then undertakes a sequential parametric reduction 

procedure (usually through F tests) to derive the final parsimonious model. In order for a 

particular parametric reduction to be acceptable, the significance tests have to accept the null 

hypotheses against all larger models within which the smaller model is nested, and, at the 

same time, the residuals have to pass the diagnostic checks. If the error terms do not pass the 

diagnostic tests, then the reduction cannot be accepted even if the significance tests accept. 

 Panel 4.1 of Table 4 displays the results for the preferred parsimonious specification. 

While the unrestricted error-correction model has a total of 24 parameters, the restricted 

parsimonious model only has 15 parameters. In particular, the model’s key equation – the 

investment equation – appears appropriately parameterised through only four parameters. As 

Panels 4.2 and 4.3 of the table make clear, the model’s error terms all pass the diagnostic tests 

at the conventional significance levels.11 

 In the final specification of the investment equation, the growth rate of investment is 

a dynamic function of its own history, of the lagged growth rate of real output, and of 

deviations of investment from its long-run equilibrium level (see the third column in Panel 4.1 

of Table 4). The standard error of the equation is 8.0 percent, which is 0.2 percentage points 

lower than that of the investment equation in the unrestricted error-correction model. 

As expected, the growth rate of investment is not weakly exogenous with respect to 

the long-run parameters related to the cointegrating relationship: the t value of the parameter 

estimate on the long-run relationship is approximately –5.7.12 This provides further informal 

support for our interpretation of relationship (4) as a long-run investment function. On the 

other hand, both the growth rates of output and the valuation ratio are statistically unaffected 

by the long-run relationship, and are thus treated as weakly exogenous with respect to the 

model’s long-run parameters. Provided that one is only interested in inference on the model’s 

parameters, this implies that it is sufficient to limit the analysis to the conditional models for 

tG∆  and tI∆ . However, if one, as we do here, wishes to derive dynamic forecasts of tG∆  or 

tI∆ , then weak exogeneity is not sufficient. In this case, the relevant concept is that of strong 

exogeneity which, in addition to weak exogeneity, requires the absence of Granger causality 

                                                           
11 To check the stability properties of the model, we compute recursive 1-step residuals and a battery of Chow 
tests (for details see Doornik and Hendry, 1997, chapter 10). The analysis is undertaken for the period 1988-
1995. From the tests it can be concluded that the stability properties of the model are satisfactory. According to 
the results, no test value is significant at the 1 percent test level and only one value is significant at the 5 percent 
level (1-step Chow test for 1994, p value = 0.02). 
12 The concept of weak exogeneity (and related issues) is discussed in, for example, Engle et al. (1983). 
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from the modelled variables ( tG∆  and tI∆ ) to the non-modelled conditioning variables ( tY∆  

and tQ∆ ). As can be seen from the estimated equations in Panel 4.1 of Table 4, this condition 

is clearly not fulfilled in the present application. 

According to the estimated investment equation, there is no Granger causality from 

tG∆  to tI∆ . Hence, investment is not directly related to capital gearing.13 This means that, in 

direct terms, investment depends on average rather than marginal Q, and on output Yt .14 It 

should be noted, however, that investment indirectly still depends on the capital-gearing 

variable via output and the valuation ratio. 

 

[Table 4. about here] 

 

4. Forecasting investment 

 

In this section we investigate the forecasting properties of our investment model. The first 

sub-section is devoted to the model developed in the previous section. The computation of 

Tobin’s average Q is tedious and some of the data that are needed often arrive too late to be 

useful in practice, e.g. for macroeconomic forecasting purposes. Therefore, section 4.2 gives 

an analysis of a simplified, less data-demanding, version of the model in which average Q is 

approximated by a relative equity-price index. 

 

4.1 Forecasting with average Q 

 

In this section we look into the forecasting properties of our parsimonious error-correction 

model. Graphs 2.1, 2.2, and 2.3 of Figure 2 display recursive 1-step-ahead, recursive 2-step-

ahead, and dynamic forecasts of the growth rate of investment over the period 1991-1995. 

The recursive forecasts are derived as follows. First, the model is re-estimated on the sub-

                                                           
13 Recall that the capital-gearing variable is not part of the long-run equilibrium relationship, see equation (4). 
14 Note that although the estimated investment equation suggests that tI∆  is not affected by the lags of tQ∆ , 
investment still directly depends on the valuation ratio through the long-run relationship (4). The conditional 
process of tI∆  provides further potential for a direct relationship between investment and average Q (cf. the 

discussion above). However, re-estimation conditional on tY∆  and tQ∆  reveals the contemporaneous values of 

tQ∆  to be insignificantly related to tI∆  (the t value of the parameter estimate on tQ∆  in the unrestricted error-
correction model is only 0.4). 
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sample 1951-1990.15 Then, using this estimate of the model, forecasts of the growth rate of 

investment for 1991,…, 1990+h are derived (here, 1=h  in case of 1-step-ahead forecasts and 

2=h  in case of 2-step-ahead forecasts). Next, the model is re-estimated on the sub-sample 

1951-1990+h. Using this new estimate of the model, forecasts for 1990+h+1,…, 1990+2h are 

computed. The new sub-sample for re-estimation then is 1951-1990+2h, etc. The dynamic (or 

multi-step) forecasts just use the estimate of the model over the first sub-sample (i.e., 1951-

1990) to compute all the forecasts. The dynamic forecasts are thus equivalent to (recursive) 5-

step-ahead forecasts. 

 As is evidenced by the recursive analysis in Graphs 2.1 and 2.2, the model’s short-

run forecasting performance is quite impressive. Although our forecasting experiment 

happens to be undertaken in a time period when Swedish manufacturing-industry investment 

is very volatile, the recursive forecasts have no problems in tracking the evolution of the 

growth rate of investment. As expected, when we extend the forecast horizon, the reliability 

of the forecasts decreases (Graph 2.3). Thus, while our model may have some problems in 

accurately tracking the growth rate of investment at more distant forecast horizons, for the 

typical horizons that are of interest in practice, it appears quite accurate.16 

 

[Figure 2. about here] 

 

 The graphical findings are summarised numerically in Table 5. This table reports the 

root mean square errors (RMSEs) for the three different forecasts, and also gives a 

comparison with seven different naive alternatives. The first three keep to the assumption that 

the growth rate of investment is I(0) but replace the parsimonious error-correction system by a 

simple ARIMA model. Alternatives four and five (“dynamic” random walk and “recursive” 

random walk) assume that the growth rate of investment is I(1). The “dynamic” random walk 

derives its forecasts conditional on the information available in the year 1990 while the 

“recursive” random walk simply uses the values at time 1−t  as the forecasts of the values at 

time t. Alternatives six and seven (“dynamic” mean and “recursive” mean) again are based on 

the assumption that the growth rate of investment is I(0). The “recursive” mean, however, 

uses )1951/()...( 11951 −∆++∆ − tII t  as its forecast for the year t, and thus (to some extent) 

                                                           
15 The only parameters which are not re-estimated are those of the long-run equilibrium relationship (8). The 
parameter estimates that are used for this relationship are throughout those obtained using the full sample 1951-
1995. However, because these estimates are fairly stable, the results do not change much in case one also re-
estimates these parameters. A formal test of the hypothesis that the cointegration parameters are all constant does 
not reject at conventional significance levels. 
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allows for deterministic shifts in the mean. The “dynamic” mean just uses the sample mean 

over the period 1951-1990.17 

 As expected, the recursive 1-step-ahead forecasts have the lowest RMSE. The RMSE 

of these forecasts, at 8.7 percentage points, is 4.6 percentage points lower than the RMSE of 

the recursive 2-step-ahead forecasts and 10.7 percentage points lower than the RMSE of the 

dynamic forecasts. The parsimonious error-correction model’s recursive forecasts are 

throughout more accurate than the corresponding forecasts generated by the naive alternatives 

(recursive ARIMA, “recursive” random walk, and “recursive” mean). Here, the RMSE of the 

recursive 1-step-ahead forecasts is 9 percentage points lower than that of the recursive 

ARIMA and “recursive” random walk, and 16 percentage points lower than that of the 

“recursive” mean. For the recursive 2-step-ahead forecasts, the differences are 6, 4, and 11 

percentage points, respectively. In qualitative terms, the same picture emerges for the 

comparisons of the dynamic forecasts. In this case, the RMSE of the forecasts of the 

parsimonious error-correction model is 20 percentage points lower than that of the ARIMA 

forecasts. For the “dynamic” random walk and the “dynamic” mean, the differences are 7 and 

5 percentage points, respectively. 

 While the theory used in this paper may give a motivation for the empirical 

modelling of investment, the VAR equations for tY∆ , tG∆ , and tQ∆  basically have no 

theoretical support. Yet, they may nevertheless of course generate good forecasts of these 

variables. In order to investigate this issue Table 5 also computes dynamic forecasts assuming 

that the future values of tY∆ , tG∆ , and tQ∆  are known. As can be seen, the RMSE only 

improves marginally (by roughly 2 percentage points), suggesting that the equations for the 

non-investment variables indeed work well for purposes of forecasting. 

 Finally, to ascertain the importance of the error-correction mechanism in (2), we 

compute forecasts restricting the Π  matrix to zero. As shown in Table 5, the RMSE increases 

substantially (by almost 20 percentage points) compared to the unrestricted case. This 

suggests that the long-run investment relation in (4) contributes significantly to the good 

forecasting performance of the model. 

 

                                                                                                                                                                                     
16 Official forecast institutes (in Sweden and other countries) typically use a forecast horizon of two years. 
17 Note that the full sample length for our rawdata in levels is 1951-1995 in the case of Gt  and Qt  but 1950-
1995 in the case of I t  and Yt . This explains why the mean computations (“recursive” and “dynamic”) use level 
information from 1950 and onwards while the econometric system analysis only uses level information from 
1951 and onwards. The ARIMA fit is also based on level information from 1950. 
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[Table 5. about here] 

 

4.2 Forecasting with equity prices 

 

As suggested by Barro (1989), changes in equity prices may approximate changes in Tobin’s 

average Q. Here, we investigate this hypothesis and use a relative equity-price index (real 

stock-price index) defined as the ratio between the equity-price index for the manufacturing 

industry and the implicit price index for investment goods in the manufacturing industry (the 

log level of this variable is denoted by S).18 The most important advantage of this measure 

compared to average Q is that it can be constructed much quicker from actual data. It thus 

appears more useful for forecasting purposes than average Q. The time-series plot of the 

variable is given in the bottom-left graph of Figure 1. The bottom-right graph of this figure 

also gives the plots of Q and S in a combined graph (in this graph, both Q and S have been 

normalised to have zero mean and unit variance). As can be seen, it may be conjectured that S 

is rather good proxy for Q. The correlation between the changes of the two series is 0.88. 

 To examine the implications for forecasting from approximating Tobin’s average Q 

with real stock prices, we replace Qt  by St  and re-estimate system (6).19 The results are given 

in Table 6. (The final “specific” model is obtained using the steps described in Section 3.) 

 The results in Panels 4.1 and 6.1 are quite similar and hence indicate that St  

constitutes an acceptable approximation of average Q. Also, the standard error of the 

investment equation is roughly the same at 8.0 percent. Similar to the case with Qt , the St  

variable affects investment significantly in the long run but not in the short run. The forecasts 

of the model are evaluated in Table 7. As can be seen, the RMSEs are very similar to those of 

the average-Q-based model for all three types of forecasts. The 1-step-ahead RMSE decreases 

by 0.3 percentage points, the 2-step-ahead RMSE by 1.6 percentage points, and the RMSE for 

the dynamic forecasts by 0.1 percentage points. Graphically, the forecasts are presented in 

Figure 3. 

 

[Table 6. about here] 

 

[Table 7. about here] 
                                                           
18 As a test of robustness we have also undertaken estimations using the consumer price index (CPI) to construct 
S. The results, which are available from the authors upon request, are not affected by this change. 
19 For this specification, the capital-gearing variable Gt  was left out. Including it does not improve the results. 
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[Figure 3. about here] 

 

 In view of the often-noted substantial volatility of investment, the forecasting 

performances of these Q-theory-based models seem quite promising. Also, since there is a 

considerable delay in the publication of the data needed to compute average Q, it is even more 

noteworthy that the model with the equity-price-index approximation performs as well as the 

original model in terms of general model properties and forecasting. 

 

5. Concluding remarks 

 

Investments are known to display substantial volatility and are therefore difficult to predict. 

The neoclassical investment theory based on Tobin’s Q is one of the dominating theories in 

the literature, though its empirical success has been rather limited so far. In this paper we 

undertake an empirical analysis of investment in the Swedish manufacturing industry 

emanating from a traditional neoclassical investment model extended with capital installation 

costs, agency costs for investment financing, and the possibility of the firm being output 

constrained. An interesting feature of this model is that it, contrary to the traditional Q model, 

does not restrict investment to be solely determined by average Q, and allows for influences 

from both real output and financial mechanisms. 

The empirical results are derived using a multivariate error-correction approach, 

which among other things permits us to impose long-run restrictions rooted in economic 

theory. The results suggest that both average Q and output are significant explanatory 

variables for investment in the long run. In the short run, other variables also matter, for 

example costs for financing investment. The model’s forecasting performance turns out to be 

quite impressive, particularly in the short and medium run. 

In practice, a measure of average Q is available only after a considerable time lag. 

This makes investment models based on data for average Q less useful for short- and medium-

term forecasting. However, a relative equity-price index is shown to be a good approximation 

of average Q, both for empirical modelling in general and forecasting in particular. 
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Data appendix 

 

Jan Södersten, Uppsala University, has kindly provided us with most of the data for this 

analysis. The data for Tobin’s Q and the capital-gearing variable G have been computed by 

Södersten (see Södersten and Lindberg, 1983). 

The data for investments and output for the manufacturing industry are from the 

Swedish national accounts, and the equity-price index is Affärsvärldens Generalindex for the 

manufacturing industry. In order to obtain a relative price measure, the equity-price index has 

been deflated by the implicit price index for investment goods. 

The market value debt-equity ratios have been estimated in two stages. In the first 

stage the replacement-cost value attributable to equity is estimated. Then net capital stock 

calculations, valued at current replacement cost, and balance-sheet data on financial assets 

and liabilities together with calculations of the contingent tax liability resulting from 

accelerated depreciation and inventory write-down are used, and the replacement-cost value 

of equity is determined residually. Net trade credit is excluded in these calculations. In the 

second stage, the market value of equity is estimated by using a sample of 13 major 

engineering companies, accounting for 40 percent of the sales in manufacturing and 25 

percent of the market value of the Stockholm Stock Exchange in 1980. The calculations 

indicate that equity in 1960 had a market value very close to its estimated replacement value. 

Average Q then fell to 0.6 in 1970 and further to 0.3 in 1980. These values for average Q are 

then treated as representative of the manufacturing industry as a whole and used to compute 

the market values of equity as average Q times the estimates of the replacement-cost value of 

equity, using the 1970-1980 average value of average Q (equal to 0.51). 

The capital-gearing variable G is calculated as the debt-equity ratio, i.e. the ratio 

between the market value of debt and the market value of equity. The former is estimated as 

the book value of debt. The division of equity finance between retained earnings and new 

issues is estimated from sources of funds data, and a three-year average is used. Since new 

share issues to acquire an existing company do not constitute a source of net new finance, 

such issues are excluded. 



 15 

References 

 

Anderson, G. J. (1981), “A new approach to the empirical investigation of investment 

expenditures”, Journal of Monetary Economics, Supplement 12, 39-91. 

Barro, R. J. (1989), “The stock market and investment”, NBER Working Paper No. 2925. 

Bean, C. J. (1981), “An econometric model of manufacturing investment in the U.K.”, 

Economic Journal 91, 106-121. 

Bond, S., and Devereux, M. (1988), “Testing the sensitivity of Q investment equations to 

measurement of the capital stock”, Discussion Paper No. 88/5, Institute for Fiscal 

Studies. 

Bond, S., and Meghir, C. (1990), “Dynamic investment models and the firms financial 

policy”, Mimeo, Institute of Economics and Statistics. 

Chirinko, R. S. (1987), “Tobin’s Q and financial policy”, Journal of Monetary Economics 19, 

69-87. 

Cuthbertson, K., and Gasparro, D. (1995), “Fixed investment decisions in UK manufacturing: 

The importance of Tobin’s Q, output and debt”, European Economic Review 39, 919-

941. 

Doornik, J. A., and Hendry, D. F. (1997), Modelling dynamic systems using PcFIML 9.0 for 

Windows, International Thomson Business Press: London. 

Engle, R. F., Hendry, D. F., and Richard, J-F. (1983), Exogeneity, Econometrica 51, 277-304. 

Gonzalo, J. (1994), “Five alternative methods of estimating long-run equilibrium 

relationships”, Journal of Econometrics 60, 203-233. 

Hargreaves, C. (1994), “A review of methods of estimating cointegrating relationships”, in C. 

Hargreaves (ed.), Nonstationary Time Series Analysis and Cointegration, Oxford 

University Press. 

Hayashi, F. (1982), “Tobin’s marginal-Q and average Q: A neoclassical interpretation”, 

Econometrica 50, 213-224. 

Hendry, D. F. (1995), Dynamic econometrics, Oxford University Press: Oxford. 

Henley, A., and Carruth, A. (1989), “An econometric analysis of aggregate investment 

expenditure in the UK”, Discussion Paper in Economics No. 89/6, University of 

Kent. 



 16 

Jacobson, T., Jansson, P., Vredin, A., and Warne, A. (2000), “Monetary policy analysis and 

inflation targeting in a small open economy: A VAR approach”, forthcoming in 

Journal of Applied Econometrics. 

Jacobson, T., and Nessén, M. (1998), “Long-run perspectives on purchasing power parity”, 

Sveriges Riksbank Working Paper Series No. 75. 

Jenkinson, N. (1981), “Investment, profitability and the valuation ratio”, Discussion Paper 

No. 17, Bank of England. 

Johansen, S. (1988), “Statistical analysis of cointegrating vectors”, Journal of Economic 

Dynamics and Control 12, 231-254. 

Johansen, S. (1991), “Estimation and hypothesis testing of cointegration vectors in Gaussian 

vector autoregressive models”, Econometrica 59, 1551-1580. 

Lomax, J. (1990), “A model of manufacturing sector investment and employment decisions”, 

Discussion Paper No. 48, Bank of England. 

MacKinnon, J. G. (1991), “Critical values for cointegration tests”, in R. F. Engle and C. W. J. 

Granger (eds.), Long-Run Economic Relationships, Oxford University Press. 

Osterwald-Lenum, M. (1992), “A note with quantiles of the asymptotic distribution of the 

maximum likelihood cointegration rank test statistics”, Oxford Bulletin of Economics 

and Statistics 54, 461-472. 

Pesaran, M. H., and Pesaran, B. (1997), Working with Microfit 4.0. Interactive econometric 

analysis, Oxford University Press: Oxford. 

Pesaran, M. H., and Shin, Y. (1997), “Long-run structural modelling”, Department of Applied 

Economics: University of Cambridge. 

Poterba, J. M., and Summers, L. H. (1983), “Dividend taxes, corporate investment and ’Q’”, 

Journal of Public Economics 22, 135-167. 

Precious, M. (1987), “Rational expectations non-market clearing and investment theory”, 

Oxford University Press: Oxford. 

Schaller, H. (1990), “A re-examination of the Q theory of investment using US firm data”, 

Journal of Applied Econometrics 5, 309-325. 

Sumner, M. (1989), “Investment, Q and taxes”, Public Finance 44, 285-294. 

Södersten, J., and Lindberg, T. (1983), “Skatt på bolagskapital” (“The taxation of corporate 

capital”), Research Report 20, The Industrial Institute of Economic and Social 

Research. 



 17 

Figure 1. The data in levels (logs) 
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Figure 2. Forecasts of ∆It  1991-1995 

 

Graph 2.1. Recursive 1-step-ahead forecasts 
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Graph 2.2. Recursive 2-step-ahead forecasts 
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(Figure 2. continued) 

 
 

Graph 2.3. Dynamic forecasts 
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Notes: The 95 percent confidence intervals are based on error variances (see Doornik and Hendry, 1997, 
chapters 7 and 10). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 20 

Figure 3. Forecasts of ∆It  1991-1995 using the real stock-price-based model 

 

Graph 3.1. Recursive 1-step-ahead forecasts 
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Graph 3.2. Recursive 2-step-ahead forecasts 
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(Figure 3. continued) 

 
Graph 3.3. Dynamic forecasts 
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Notes: The 95 percent confidence intervals are based on error variances (see Doornik and Hendry, 1997, 
chapters 7 and 10). 
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Table 1. F tests and information criteria 
 

Panel 1.1. System information and information criteria 

k T p Log 

likelihood 

SC HQ AIC 

1 41 20 477.38 -21.48* -22.00 -23.29 

2 41 36 503.45 -21.30 -22.25* -23.56* 

3 41 52 511.06 -20.22 -21.60 -22.93 

4 41 68 517.21 -19.07 -20.88 -22.23 

Notes: k refers to the number of lags in the VAR. T refers to the number of observations. p refers to the number 
of estimated parameters. SC is the Schwartz criterion. HQ is the Hannan-Quinn criterion. AIC is Akaike’s 
criterion. * indicates a minimum. 
 

Panel 1.2. F tests of system reduction 

Reduction hypothesis F-test value (p value) 

2 lags vs. 1 lag 2.88** (0.00) 

3 lags vs. 2 lags 0.62 (0.86) 

4 lags vs. 3 lags 0.42 (0.97) 

Notes: The F statistics are distributed as F(16, 89) (2 vs. 1), F(16, 77) (3 vs. 2), and F(16, 64) (4 vs. 3) 
respectively. ** indicates significance at the 1 percent test level. 
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Table 2. Multivariate and univariate residual diagnostics 
 

Panel 2.1. Multivariate tests 

Test Test value (p value) 

Vector autocorrelation 2 F(32, 86) 0.68 (0.89) 

Vector normality χ 2 8( )  2.68 (0.95) 

Vector heteroscedasticity F(160, 87) 0.54 (1.00) 

Notes: See Doornik and Hendry (1997), chapter 10, for details of the tests. 

 

Panel 2.2. Univariate tests 

Test/Eq. for Gt  Qt  Yt  I t  

Autocorr. 2 

F(2, 32) 

0.23 

(0.80) 

2.07 

(0.14) 

1.47 

(0.24) 

0.80 

(0.46) 

Normality 

χ 2 2( )  

1.67 

(0.43) 

0.97 

(0.62) 

0.21 

(0.90) 

1.24 

(0.54) 

ARCH 1 

F(1, 32) 

0.24 

(0.63) 

0.21 

(0.65) 

0.79 

(0.38) 

0.14 

(0.71) 

Heterosced. 

F(16, 17) 

0.80 

(0.67) 

0.75 

(0.72) 

0.63 

(0.82) 

1.16 

(0.38) 

Notes: The numbers within parentheses are p values. See Doornik and Hendry (1997), chapter 10, for details of 
the tests. 
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Table 3. Cointegration analysis 
 

Panel 3.1. Testing for cointegration using Johansen’s likelihood-ratio (LR) trace tests 

Null hypothesis Alternative hypothesis Test value 95 percent critical value 

r = 0  r > 0  39.37 47.20 

r ≤ 1  r > 1  16.71 29.70 

r ≤ 2  r > 2  6.49 15.40 

r ≤ 3  r > 3  0.70 3.80 

Notes: r refers to the number of cointegrating vectors. The critical values have been computed using a response 
surface fitted to the results of Osterwald-Lenum (1992). The analysis is based on a VAR(2) which includes an 
unrestricted vector of constants. 
 

Panel 3.2. Testing for cointegration using information criteria 

r T p Log 

likelihood 

SC HQ AIC 

0 43 20 506.54 -21.81 -22.33 -23.56* 

1 43 24 517.87 -21.99* -22.61* -23.09 

2 43 28 522.98 -21.88 -22.60 -23.33 

3 43 32 525.87 -21.66 -22.49 -23.46 

4 43 36 526.22 -21.33 -22.26 -23.48 

Notes: r refers to the number of cointegrating vectors. T refers to the number of observations. p refers to the 
number of estimated parameters. SC is the Schwartz criterion. HQ is the Hannan-Quinn criterion. AIC is 
Akaike’s criterion. * indicates a minimum. 
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Table 4. General-to-specific modelling results 
 

Panel 4.1. The parsimonious vector error-correction model 

Explanatory var./ 

Eq. for 

∆Gt  ∆I t  ∆Yt  ∆Qt  

Constant -0.05** 

(0.02) 

0.28*** 

(0.06) 

0.01* 

(0.01) 

0.02 

(0.02) 

∆Gt−1   

 

 

 

-0.28** 

(0.13) 

-0.79* 

(0.45) 

∆I t−1   

 

0.28** 

(0.13) 

-0.10** 

(0.05) 

 

 

∆Yt−1  0.26** 

(0.11) 

1.44*** 

(0.38) 

0.79*** 

(0.14) 

 

 

∆Qt−1  0.09** 

(0.04) 

 0.11** 

(0.04) 

 

 

ECt−1  0.08** 

(0.04) 

-0.54*** 

(0.09) 

 

 

 

 

Stand. error 0.03 0.08 0.03 0.11 

Notes: *** indicates significance at the 1 percent level, ** indicates significance at the 5 percent level, and * 
indicates significance at the 10 percent level. The numbers within parentheses are standard errors of parameter 
estimates. The last row gives the standard errors of the equations. EC is the error-correction mechanism, EC = I 
– 0.29Q – 0.78Y. 
 

Panel 4.2. Multivariate residual diagnostics 

Test Test value (p value) 

Vector autocorrelation 2 F(32, 108) 0.63 (0.93) 

Vector normality χ 2 8( )  5.66 (0.69) 

Vector heteroscedasticity F(100, 155) 0.78 (0.91) 

Notes: See Doornik and Hendry (1997), chapter 10, for details of the tests. 
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(Table 4. continued) 

 
Panel 4.3. Univariate residual diagnostics 

Test/Eq. for ∆Gt  ∆I t  ∆Yt  ∆Qt  

Autocorr. 2 

F(2, 35) 

0.72 

(0.49) 

1.22 

(0.31) 

1.97 

(0.15) 

2.62 

(0.09) 

Normality 

χ 2 2( )  

3.65 

(0.16) 

1.11 

(0.57) 

1.43 

(0.49) 

1.90 

(0.39) 

ARCH 1 

F(1, 35) 

0.89 

(0.35) 

0.73 

(0.40) 

0.84 

(0.36) 

0.00 

(0.97) 

Heterosced. 

F(10, 26) 

1.03 

(0.45) 

0.85 

(0.59) 

1.65 

(0.15) 

0.60 

(0.80) 

Notes: Numbers within parentheses are p values. See Doornik and Hendry (1997), chapter 10, for details of the 
tests. 
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Table 5. Evaluation of forecast performance 1991-1995 
 

Type of forecast Root mean square error 

Dynamic [with actual values of RHS variables] 0.194 [0.177] 

Recursive 1-step-ahead 0.087 

Recursive 2-step-ahead 0.133 

Dynamic without error-correction mechanism 0.388 

Dynamic, ARIMA(2, 1,1) 0.393 

Recursive 1-step-ahead, ARIMA(2, 1,1) 0.180 

Recursive 2-step-ahead, ARIMA(2, 1,1) 0.189 

“Dynamic” random walk 0.266 

“Recursive” random walk 0.177 

“Dynamic” mean 0.244 

“Recursive” mean 0.247 

Notes: Rows 2-4 use the model in Panel 4.1 of Table 4 on sub-samples 1951-t, t = 1990, 1994... , . “Dynamic” 
random walk uses ∆ ∆~I It = 1990 , where ∆~I t  is the forecasted growth rate of investment and t = 1991 1995,...,  . 

“Recursive” random walk uses ∆ ∆~I It t= −1 , where t = 1991 1995,...,  . “Dynamic” mean uses 

∆ ∆ ∆~ ( ... ) /I I It = + +1951 1990  ( )1990 1951 1− + . “Recursive” mean uses ∆ ∆ ∆~ ( ... ) / ( )I I I tt t= + + −−1951 1 1951 , where 
t = 1991 1995,...,  . 
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Table 6. General-to-specific modelling results using the real stock-price-based model 
 

Panel 6.1. The parsimonious vector error-correction model 

Explanatory var./ 

Eq. For 

∆I t  ∆Yt  ∆St  

Constant 0.49*** 

(0.09) 

0.10*** 

(0.03) 

0.38** 

(0.17) 

∆I t−1  0.34*** 

(0.12) 

  

∆Yt−1  1.42*** 

(0.36) 

0.61*** 

(0.12) 

 

ECt−1  -0.58*** 

(0.10) 

-0.10** 

(0.04) 

-0.38** 

(0.19) 

Stand. Error 0.08 0.03 0.17 

Notes: *** indicates significance at the 1 percent level and ** significance at the 5 percent level. The numbers 
within parentheses are standard errors of parameter estimates. The last row gives the standard errors of the 
equations. EC is the error-correction mechanism, EC = I – 0.11S – 0.76Y. S is the real stock-price index. The full 
sample period is 1950-1995. 
 

Panel 6.2. Multivariate residual diagnostics 

Test Test value (p value) 

Vector autocorrelation 2 F(18, 93) 0.80 (0.70) 

Vector normality χ 2 6( )  5.19 (0.52) 

Vector heteroscedasticity F(48, 136) 0.82 (0.78) 

Notes: See Doornik and Hendry (1997), chapter 10, for details of the tests. 

 

Panel 6.3. Univariate residual diagnostics 

Test/Eq. For ∆I t  ∆Yt  ∆St  

Autocorr. 2 

F(2, 37) 

0.33 

(0.72) 

2.56 

(0.09) 

2.19 

(0.13) 

Normality 

χ 2 2( )  

1.77 

(0.41) 

0.13 

(0.94) 

2.65 

(0.27) 

ARCH 1 

F(1, 37) 

1.90 

(0.18) 

1.09 

(0.30) 

0.33 

(0.57) 

Heterosced. 

F(8, 30) 

0.70 

(0.69) 

1.38 

(0.24) 

1.37 

(0.25) 

Notes: Numbers within parentheses are p values. See Doornik and Hendry (1997), chapter 10, for details of the 
tests. 
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Table 7. Evaluation of forecasts 1991-1995 using the real stock-price-based model 

 

Type of forecast Root mean square error 

Dynamic 0.193 [0.194] 

Recursive 1-step-ahead 0.084 [0.087] 

Recursive 2-step-ahead 0.117 [0.133] 

Dynamic, ARIMA(2, 1,1) 0.393 

Recursive 1-step-ahead, ARIMA(2, 1,1) 0.180 

Recursive 2-step-ahead, ARIMA(2, 1,1) 0.189 

“Dynamic” random walk 0.266 

“Recursive” random walk 0.177 

“Dynamic” mean 0.244 

“Recursive” mean 0.247 

Notes: Rows 2-4 use the model in Panel 6.1 of Table 6 on sub-samples 1950-t, t = 1990, 1994... , . The numbers 
within square brackets are the results for the model in Panel 4.1 of Table 4 (see Table 5). For details of the 
various naive models see the notes in Table 5. 
 

 


	Investment in Swedish manufacturing:
	Analysis and forecasts*
	August 30, 2001
	Abstract
	T




